Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Clin Immunol ; 2023 May 20.
Article in English | MEDLINE | ID: covidwho-2325547

ABSTRACT

Autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) are found in the blood of at least 15% of unvaccinated patients with life-threatening COVID-19 pneumonia. We report here the presence of auto-Abs neutralizing type I IFNs in the bronchoalveolar lavage (BAL) of 54 of the 415 unvaccinated patients (13%) with life-threatening COVID-19 pneumonia tested. The 54 individuals with neutralizing auto-Abs in the BAL included 45 (11%) with auto-Abs against IFN-α2, 37 (9%) with auto-Abs against IFN-ω, 54 (13%) with auto-Abs against IFN-α2 and/or ω, and five (1%) with auto-Abs against IFN-ß, including three (0.7%) with auto-Abs neutralizing IFN-α2, IFN-ω, and IFN-ß, and two (0.5%) with auto-Abs neutralizing IFN-α2 and IFN-ß. Auto-Abs against IFN-α2 also neutralize the other 12 subtypes of IFN-α. Paired plasma samples were available for 95 patients. All seven patients with paired samples who had detectable auto-Abs in BAL also had detectable auto-Abs in plasma, and one patient had auto-Abs detectable only in blood. Auto-Abs neutralizing type I IFNs are, therefore, present in the alveolar space of at least 10% of patients with life-threatening COVID-19 pneumonia. These findings suggest that these auto-Abs impair type I IFN immunity in the lower respiratory tract, thereby contributing to hypoxemic COVID-19 pneumonia.

2.
Annu Rev Biomed Data Sci ; 2023 May 17.
Article in English | MEDLINE | ID: covidwho-2322493

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is silent or benign in most infected individuals, but causes hypoxemic COVID-19 pneumonia in about 10% of cases. We review studies of the human genetics of life-threatening COVID-19 pneumonia, focusing on both rare and common variants. Large-scale genome-wide association studies have identified more than 20 common loci robustly associated with COVID-19 pneumonia with modest effect sizes, some implicating genes expressed in the lungs or leukocytes. The most robust association, on chromosome 3, concerns a haplotype inherited from Neanderthals. Sequencing studies focusing on rare variants with a strong effect have been particularly successful, identifying inborn errors of type I interferon (IFN) immunity in 1-5% of unvaccinated patients with critical pneumonia, and their autoimmune phenocopy, autoantibodies against type I IFN, in another 15-20% of cases. Our growing understanding of the impact of human genetic variation on immunity to SARS-CoV-2 is enabling health systems to improve protection for individuals and populations. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 6 is August 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

3.
Respir Res ; 24(1): 87, 2023 Mar 20.
Article in English | MEDLINE | ID: covidwho-2276405

ABSTRACT

SARS-CoV2 infection has a poor prognosis in patients affected of idiopathic pulmonary fibrosis (IPF). Autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) are found in the blood of at least 15% of patients with life-threatening COVID-19 pneumonia. Because of the elevated prevalence of some auto-Abs in IPF patients, we hypothesize that the prevalence of auto-Abs neutralizing type I IFNs might be increased in the IPF population and then explained specific poor outcome after COVID-19. We screened the plasma of 247 consecutive IPF patients for the presence of auto-Abs neutralizing type I IFNs. Three patients displayed auto-Abs neutralizing type I IFNs. Among them, the only patient with documented SARS-CoV-2 infection experienced life threatening COVID-19 pneumonia. The prevalence of auto-Abs neutralizing type I IFNs in this cohort of IPF patients was not significantly different from the one of the general population. Overall, this study did not suggest any association between auto-Abs neutralizing type I IFNs and IPF.


Subject(s)
COVID-19 , Idiopathic Pulmonary Fibrosis , Interferon Type I , Humans , Autoantibodies , Prevalence , RNA, Viral , SARS-CoV-2 , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/epidemiology
4.
J Allergy Clin Immunol ; 150(5): 1059-1073, 2022 11.
Article in English | MEDLINE | ID: covidwho-2105179

ABSTRACT

BACKGROUND: Most severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals are asymptomatic or only exhibit mild disease. In about 10% of cases, the infection leads to hypoxemic pneumonia, although it is much more rare in children. OBJECTIVE: We evaluated 31 young patients aged 0.5 to 19 years who had preexisting inborn errors of immunity (IEI) but lacked a molecular diagnosis and were later diagnosed with coronavirus disease 2019 (COVID-19) complications. METHODS: Genetic evaluation by whole-exome sequencing was performed in all patients. SARS-CoV-2-specific antibodies, autoantibodies against type I IFN (IFN-I), and inflammatory factors in plasma were measured. We also reviewed COVID-19 disease severity/outcome in reported IEI patients. RESULTS: A potential genetic cause of the IEI was identified in 28 patients (90.3%), including mutations that may affect IFN signaling, T- and B-cell function, the inflammasome, and the complement system. From tested patients 65.5% had detectable virus-specific antibodies, and 6.8% had autoantibodies neutralizing IFN-I. Five patients (16.1%) fulfilled the diagnostic criteria of multisystem inflammatory syndrome in children. Eleven patients (35.4%) died of COVID-19 complications. All together, at least 381 IEI children with COVID-19 have been reported in the literature to date. Although many patients with asymptomatic or mild disease may not have been reported, severe presentation of COVID-19 was observed in 23.6% of the published cases, and the mortality rate was 8.7%. CONCLUSIONS: Young patients with preexisting IEI may have higher mortality than children without IEI when infected with SARS-CoV-2. Elucidating the genetic basis of IEI patients with severe/critical COVID-19 may help to develop better strategies for prevention and treatment of severe COVID-19 disease and complications in pediatric patients.


Subject(s)
COVID-19 , Humans , Child , COVID-19/genetics , SARS-CoV-2 , Antibodies, Viral , Autoantibodies
6.
Bastard, Paul, Vazquez, Sara, Liu, Jamin, Laurie, Matthew T.; Wang, Chung Yu, Gervais, Adrian, Le Voyer, Tom, Bizien, Lucy, Zamecnik, Colin, Philippot, Quentin, Rosain, Jérémie, Catherinot, Emilie, Willmore, Andrew, Mitchell, Anthea M.; Bair, Rebecca, Garçon, Pierre, Kenney, Heather, Fekkar, Arnaud, Salagianni, Maria, Poulakou, Garyphallia, Siouti, Eleni, Sahanic, Sabina, Tancevski, Ivan, Weiss, Günter, Nagl, Laurenz, Manry, Jérémy, Duvlis, Sotirija, Arroyo-Sánchez, Daniel, Paz Artal, Estela, Rubio, Luis, Perani, Cristiano, Bezzi, Michela, Sottini, Alessandra, Quaresima, Virginia, Roussel, Lucie, Vinh, Donald C.; Reyes, Luis Felipe, Garzaro, Margaux, Hatipoglu, Nevin, Boutboul, David, Tandjaoui-Lambiotte, Yacine, Borghesi, Alessandro, Aliberti, Anna, Cassaniti, Irene, Venet, Fabienne, Monneret, Guillaume, Halwani, Rabih, Sharif-Askari, Narjes Saheb, Danielson, Jeffrey, Burrel, Sonia, Morbieu, Caroline, Stepanovskyy, Yurii, Bondarenko, Anastasia, Volokha, Alla, Boyarchuk, Oksana, Gagro, Alenka, Neuville, Mathilde, Neven, Bénédicte, Keles, Sevgi, Hernu, Romain, Bal, Antonin, Novelli, Antonio, Novelli, Giuseppe, Saker, Kahina, Ailioaie, Oana, Antolí, Arnau, Jeziorski, Eric, Rocamora-Blanch, Gemma, Teixeira, Carla, Delaunay, Clarisse, Lhuillier, Marine, Le Turnier, Paul, Zhang, Yu, Mahevas, Matthieu, Pan-Hammarström, Qiang, Abolhassani, Hassan, Bompoil, Thierry, Dorgham, Karim, consortium, Covid Hge, French, Covid study group, consortium, Comet, Gorochov, Guy, Laouenan, Cédric, Rodríguez-Gallego, Carlos, Ng, Lisa F. P.; Renia, Laurent, Pujol, Aurora, Belot, Alexandre, Raffi, François, Allende, Luis M.; Martinez-Picado, Javier, Ozcelik, Tayfun, Keles, Sevgi, Imberti, Luisa, Notarangelo, Luigi D.; Troya, Jesus, Solanich, Xavier, Zhang, Shen-Ying, Puel, Anne, Wilson, Michael R.; Trouillet-Assant, Sophie, Abel, Laurent, Jouanguy, Emmanuelle, Ye, Chun Jimmie, Cobat, Aurélie, Thompson, Leslie M.; Andreakos, Evangelos, Zhang, Qian, Anderson, Mark S.; Casanova, Jean-Laurent, DeRisi, Joseph L..
Science immunology ; 2022.
Article in English | EuropePMC | ID: covidwho-1918542

ABSTRACT

Life-threatening ‘breakthrough’ cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS-CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals;however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals (age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-α2 and IFN-ω, while two neutralized IFN-ω only. No patient neutralized IFN-β. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population. Type I IFN auto-Abs are found in 20% of hypoxemic, mRNA vaccinated COVID-19 patients despite SARS-CoV-2 neutralizing antibodies. Description

7.
J Exp Med ; 219(8)2022 08 01.
Article in English | MEDLINE | ID: covidwho-1901005

ABSTRACT

Recessive or dominant inborn errors of type I interferon (IFN) immunity can underlie critical COVID-19 pneumonia in unvaccinated adults. The risk of COVID-19 pneumonia in unvaccinated children, which is much lower than in unvaccinated adults, remains unexplained. In an international cohort of 112 children (<16 yr old) hospitalized for COVID-19 pneumonia, we report 12 children (10.7%) aged 1.5-13 yr with critical (7 children), severe (3), and moderate (2) pneumonia and 4 of the 15 known clinically recessive and biochemically complete inborn errors of type I IFN immunity: X-linked recessive TLR7 deficiency (7 children) and autosomal recessive IFNAR1 (1), STAT2 (1), or TYK2 (3) deficiencies. Fibroblasts deficient for IFNAR1, STAT2, or TYK2 are highly vulnerable to SARS-CoV-2. These 15 deficiencies were not found in 1,224 children and adults with benign SARS-CoV-2 infection without pneumonia (P = 1.2 × 10-11) and with overlapping age, sex, consanguinity, and ethnicity characteristics. Recessive complete deficiencies of type I IFN immunity may underlie ∼10% of hospitalizations for COVID-19 pneumonia in children.


Subject(s)
COVID-19 , Interferon Type I , Pneumonia , Adult , COVID-19/genetics , Child , Humans , Inheritance Patterns , SARS-CoV-2
8.
J Exp Med ; 219(7)2022 07 04.
Article in English | MEDLINE | ID: covidwho-1878728

ABSTRACT

Autosomal recessive IRF7 deficiency was previously reported in three patients with single critical influenza or COVID-19 pneumonia episodes. The patients' fibroblasts and plasmacytoid dendritic cells produced no detectable type I and III IFNs, except IFN-ß. Having discovered four new patients, we describe the genetic, immunological, and clinical features of seven IRF7-deficient patients from six families and five ancestries. Five were homozygous and two were compound heterozygous for IRF7 variants. Patients typically had one episode of pulmonary viral disease. Age at onset was surprisingly broad, from 6 mo to 50 yr (mean age 29 yr). The respiratory viruses implicated included SARS-CoV-2, influenza virus, respiratory syncytial virus, and adenovirus. Serological analyses indicated previous infections with many common viruses. Cellular analyses revealed strong antiviral immunity and expanded populations of influenza- and SARS-CoV-2-specific memory CD4+ and CD8+ T cells. IRF7-deficient individuals are prone to viral infections of the respiratory tract but are otherwise healthy, potentially due to residual IFN-ß and compensatory adaptive immunity.


Subject(s)
COVID-19 , Influenza, Human , Virus Diseases , Viruses , Adult , COVID-19/genetics , Humans , Influenza, Human/genetics , SARS-CoV-2
9.
Curr Res Transl Med ; 70(2): 103333, 2022 05.
Article in English | MEDLINE | ID: covidwho-1683570

ABSTRACT

BACKGROUND: The human protein transmembrane protease serine type 2 (TMPRSS2) plays a key role in SARS-CoV-2 infection, as it is required to activate the virus' spike protein, facilitating entry into target cells. We hypothesized that naturally-occurring TMPRSS2 human genetic variants affecting the structure and function of the TMPRSS2 protein may modulate the severity of SARS-CoV-2 infection. METHODS: We focused on the only common TMPRSS2 non-synonymous variant predicted to be damaging (rs12329760 C>T, p.V160M), which has a minor allele frequency ranging from 0.14 in Ashkenazi Jewish to 0.38 in East Asians. We analysed the association between the rs12329760 and COVID-19 severity in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units recruited as part of the GenOMICC (Genetics Of Mortality In Critical Care) study. Logistic regression analyses were adjusted for sex, age and deprivation index. For in vitro studies, HEK293 cells were co-transfected with ACE2 and either TMPRSS2 wild type or mutant (TMPRSS2V160M). A SARS-CoV-2 pseudovirus entry assay was used to investigate the ability of TMPRSS2V160M to promote viral entry. RESULTS: We show that the T allele of rs12329760 is associated with a reduced likelihood of developing severe COVID-19 (OR 0.87, 95%CI:0.79-0.97, p = 0.01). This association was stronger in homozygous individuals when compared to the general population (OR 0.65, 95%CI:0.50-0.84, p = 1.3 × 10-3). We demonstrate in vitro that this variant, which causes the amino acid substitution valine to methionine, affects the catalytic activity of TMPRSS2 and is less able to support SARS-CoV-2 spike-mediated entry into cells. CONCLUSION: TMPRSS2 rs12329760 is a common variant associated with a significantly decreased risk of severe COVID-19. Further studies are needed to assess the expression of TMPRSS2 across different age groups. Moreover, our results identify TMPRSS2 as a promising drug target, with a potential role for camostat mesilate, a drug approved for the treatment of chronic pancreatitis and postoperative reflux esophagitis, in the treatment of COVID-19. Clinical trials are needed to confirm this.


Subject(s)
COVID-19 , COVID-19/genetics , Gene Frequency , HEK293 Cells , Humans , SARS-CoV-2 , Serine Endopeptidases/genetics , Virus Internalization
10.
Nature ; 603(7902): 587-598, 2022 03.
Article in English | MEDLINE | ID: covidwho-1655590

ABSTRACT

SARS-CoV-2 infection is benign in most individuals but, in around 10% of cases, it triggers hypoxaemic COVID-19 pneumonia, which leads to critical illness in around 3% of cases. The ensuing risk of death (approximately 1% across age and gender) doubles every five years from childhood onwards and is around 1.5 times greater in men than in women. Here we review the molecular and cellular determinants of critical COVID-19 pneumonia. Inborn errors of type I interferons (IFNs), including autosomal TLR3 and X-chromosome-linked TLR7 deficiencies, are found in around 1-5% of patients with critical pneumonia under 60 years old, and a lower proportion in older patients. Pre-existing auto-antibodies neutralizing IFNα, IFNß and/or IFNω, which are more common in men than in women, are found in approximately 15-20% of patients with critical pneumonia over 70 years old, and a lower proportion in younger patients. Thus, at least 15% of cases of critical COVID-19 pneumonia can be explained. The TLR3- and TLR7-dependent production of type I IFNs by respiratory epithelial cells and plasmacytoid dendritic cells, respectively, is essential for host defence against SARS-CoV-2. In ways that can depend on age and sex, insufficient type I IFN immunity in the respiratory tract during the first few days of infection may account for the spread of the virus, leading to pulmonary and systemic inflammation.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Interferon Type I/immunology , Age Distribution , Autoantibodies/immunology , COVID-19/mortality , COVID-19/pathology , Critical Illness , Dendritic Cells/immunology , Genome-Wide Association Study , Humans , Interferon Type I/genetics , Sex Distribution , Toll-Like Receptor 3/deficiency , Toll-Like Receptor 7/deficiency , Toll-Like Receptor 7/genetics
11.
J Clin Immunol ; 42(3): 459-470, 2022 04.
Article in English | MEDLINE | ID: covidwho-1653612

ABSTRACT

Recent studies reported the presence of pre-existing autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) in at least 15% of patients with critical COVID-19 pneumonia. In one study, these auto-Abs were found in almost 20% of deceased patients across all ages. We aimed to assess the prevalence and clinical impact of the auto-Abs to type I IFNs in the Seine-Saint-Denis district, which was one of the most affected areas by COVID-19 in France during the first wave. We tested for the presence of auto-Abs neutralizing type I IFNs in a cohort of patients admitted for critical COVID-19 pneumonia during the first wave in the spring of 2020 in the medicine departments at Robert Ballanger Hospital, Aulnay sous Bois. We found circulating auto-Abs that neutralized 100 pg/mL IFN-α2 and/or IFN-ω in the plasma (diluted 1/10) of 7.9% (11 of 139) of the patients hospitalized for critical COVID-19. The presence of neutralizing auto-Abs was associated with an increased risk of mortality, as these auto-Abs were detected in 21% of patients who died from COVID-19 pneumonia. Deceased patients with and without auto-Abs did not present overt clinical differences. These results confirm both the importance of type I IFN immunity in host defense against SARS-CoV-2 infection and the usefulness of detection of auto-Abs neutralizing type I IFNs in the management of patients.


Subject(s)
COVID-19 , Interferon Type I , Autoantibodies , COVID-19/epidemiology , Hospitals , Humans , SARS-CoV-2
12.
Current research in translational medicine ; 2022.
Article in English | EuropePMC | ID: covidwho-1615101

ABSTRACT

Background : The human protein transmembrane protease serine type 2 (TMPRSS2) plays a key role in SARS-CoV-2 infection, as it is required to activate the virus’ spike protein, facilitating entry into target cells. We hypothesized that naturally-occurring TMPRSS2 human genetic variants affecting the structure and function of the TMPRSS2 protein may modulate the severity of SARS-CoV-2 infection. Methods : We focused on the only common TMPRSS2 non-synonymous variant predicted to be damaging (rs12329760 C>T, p.V160M), which has a minor allele frequency ranging from from 0.14 in Ashkenazi Jewish to 0.38 in East Asians. We analysed the association between the rs12329760 and COVID-19 severity in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units recruited as part of the GenOMICC (Genetics Of Mortality In Critical Care) study. Logistic regression analyses were adjusted for sex, age and deprivation index. For in vitro studies, HEK293 cells were co-transfected with ACE2 and either TMPRSS2 wild type or mutant (TMPRSS2V160M). A SARS-CoV-2 pseudovirus entry assay was used to investigate the ability of TMPRSS2V160M to promote viral entry. Results : We show that the T allele of rs12329760 is associated with a reduced likelihood of developing severe COVID-19 (OR 0.87, 95%CI:0.79-0.97, p=0.01). This association was stronger in homozygous individuals when compared to the general population (OR 0.65, 95%CI:0.50-0.84, p=1.3 × 10−3). We demonstrate in vitro that this variant, which causes the amino acid substitution valine to methionine, affects the catalytic activity of TMPRSS2 and is less able to support SARS-CoV-2 spike-mediated entry into cells. Conclusion : TMPRSS2 rs12329760 is a common variant associated with a significantly decreased risk of severe COVID-19. Further studies are needed to assess the expression of TMPRSS2 across different age groups. Moreover, our results identify TMPRSS2 as a promising drug target, with a potential role for camostat mesilate, a drug approved for the treatment of chronic pancreatitis and postoperative reflux esophagitis, in the treatment of COVID-19. Clinical trials are needed to confirm this.

13.
Journal of Clinical Investigation ; 131(15):1-1,1A, 2021.
Article in English | ProQuest Central | ID: covidwho-1338047

ABSTRACT

[...]the power computation shown in their Figure 1 is based on an incorrect hypothesis about the odds ratio, which would be expected to be lower when using general population controls (as they did) than when using paucisymptomatic and asymptomatic infected individuals (as we did). (iv) The ethnic origin of the patients differs between the 2 studies: 58% of our 659 patients (and 8 of our 9 pLOF carriers) were European, versus only 10% of their 713 patients with severe disease (and the pLOF carrier was East Asian). (v) Age is a key factor neglected in their comparison: our sample was much younger (mean age, 51.8 years) than theirs (mean, 65.9 years), and 7 of our 9 pLOF carriers were younger than 60 years. Because the rates of pLOFs vary considerably across populations, adjustment for only 3 principal components of ancestry in rare-variant association tests of multiethnic cohorts does not provide adequate control for population structure. [...]none of the associations showed even marginal significance. [...]consistent with our study, these findings do not support substantial contributions of inborn errors in type I IFN immunity to COVID-19 severity.

14.
C R Biol ; 344(1): 19-25, 2021 Jun 21.
Article in English | MEDLINE | ID: covidwho-1302732

ABSTRACT

We established the COVID Human Genetic Effort (www.covidhge.com) to discover the human genetic and immunological bases of the vast interindividual clinical variability between humans infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We found that about 3% of patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia were ill because of inborn errors of genes controlling type I interferon (IFN)-dependent immunity (which controls influenza virus), and at least 10% of patients with life-threatening COVID-19 pneumonia had neutralizing auto-Abs against some of the 17 individual type I IFNs. These findings indicate that impaired type I IFN immunity underlies life-threatening COVID-19 pneumonia in at least 13% of patients. These discoveries pave the way for further research into unexplained severe cases, and provide a rationale for preventing and treating the disease in individuals at risk, with recombinant type I IFNs.


Nous avons créé le COVID Human Genetic Effort (www.covidhge.com) afin de découvrir les bases génétiques et immunologiques expliquant l'immense variabilité clinique interindividuelle entre les humains infectés par le nouveau coronavirus 2 du syndrome respiratoire aigu sévère (SRAS-CoV-2). Nous avons découvert qu'environ 3% des patients atteints de pneumonie sévère à coronavirus 2019 (COVID-19) menaçant leur pronostic vital étaient malades en raison de défauts génétiques dans les gènes contrôlant l'immunité dépendant de la voie de l'interféron (IFN) de type I (qui contrôle le virus de la grippe), et qu'au moins 10% de ces patients avaient des auto-anticorps neutralisants contre certains des 17 IFN de type I. Ces résultats indiquent qu'un défaut de l'immunité dépendante des IFN de type I est à l'origine de la sévérité de la pneumopathie à COVID-19 chez au moins 13% des patients. Ces découvertes ouvrent la voie à d'autres recherches sur des cas graves inexpliqués de COVID-19 et sont un argument en faveur de l'utilisation d'IFNs de type I recombinants pour la prévention et le traitement de la maladie chez les personnes à risque.


Subject(s)
COVID-19 , Interferon Type I , Pneumonia , Humans , SARS-CoV-2
16.
J Exp Med ; 218(6)2021 06 07.
Article in English | MEDLINE | ID: covidwho-1203555

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) emerged in April 2020 in communities with high COVID-19 rates. This new condition is heterogenous but resembles Kawasaki disease (KD), a well-known but poorly understood and clinically heterogenous pediatric inflammatory condition for which weak associations have been found with a myriad of viral illnesses. Epidemiological data clearly indicate that SARS-CoV-2 is the trigger for MIS-C, which typically occurs about 1 mo after infection. These findings support the hypothesis of viral triggers for the various forms of classic KD. We further suggest that rare inborn errors of immunity (IEIs) altering the immune response to SARS-CoV-2 may underlie the pathogenesis of MIS-C in some children. The discovery of monogenic IEIs underlying MIS-C would shed light on its pathogenesis, paving the way for a new genetic approach to classic KD, revisited as a heterogeneous collection of IEIs to viruses.


Subject(s)
COVID-19/etiology , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/virology , SARS-CoV-2/pathogenicity , Systemic Inflammatory Response Syndrome/etiology , Biomarkers/blood , COVID-19/epidemiology , COVID-19/immunology , Child , Cytokines/blood , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Inflammation/etiology , Inflammation/genetics , Inflammation/immunology , Inflammation Mediators/blood , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/virology , Models, Biological , Mucocutaneous Lymph Node Syndrome/epidemiology , Pandemics , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/immunology
17.
Cell Death Dis ; 12(4): 310, 2021 03 24.
Article in English | MEDLINE | ID: covidwho-1149708

ABSTRACT

SARS-CoV-2 is responsible for the ongoing world-wide pandemic which has already taken more than two million lives. Effective treatments are urgently needed. The enzymatic activity of the HECT-E3 ligase family members has been implicated in the cell egression phase of deadly RNA viruses such as Ebola through direct interaction of its VP40 Protein. Here we report that HECT-E3 ligase family members such as NEDD4 and WWP1 interact with and ubiquitylate the SARS-CoV-2 Spike protein. Furthermore, we find that HECT family members are overexpressed in primary samples derived from COVID-19 infected patients and COVID-19 mouse models. Importantly, rare germline activating variants in the NEDD4 and WWP1 genes are associated with severe COVID-19 cases. Critically, I3C, a natural NEDD4 and WWP1 inhibitor from Brassicaceae, displays potent antiviral effects and inhibits viral egression. In conclusion, we identify the HECT family members of E3 ligases as likely novel biomarkers for COVID-19, as well as new potential targets of therapeutic strategy easily testable in clinical trials in view of the established well-tolerated nature of the Brassicaceae natural compounds.


Subject(s)
COVID-19 Drug Treatment , COVID-19/enzymology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Adult , Aged , Animals , Antiviral Agents/pharmacology , COVID-19/genetics , COVID-19/metabolism , Chlorocebus aethiops , Endosomal Sorting Complexes Required for Transport/metabolism , Female , Humans , Indoles/pharmacology , Male , Mice , Mice, Inbred BALB C , Middle Aged , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Vero Cells
18.
J Exp Med ; 218(4)2021 04 05.
Article in English | MEDLINE | ID: covidwho-1066211

ABSTRACT

Yellow fever virus (YFV) live attenuated vaccine can, in rare cases, cause life-threatening disease, typically in patients with no previous history of severe viral illness. Autosomal recessive (AR) complete IFNAR1 deficiency was reported in one 12-yr-old patient. Here, we studied seven other previously healthy patients aged 13 to 80 yr with unexplained life-threatening YFV vaccine-associated disease. One 13-yr-old patient had AR complete IFNAR2 deficiency. Three other patients vaccinated at the ages of 47, 57, and 64 yr had high titers of circulating auto-Abs against at least 14 of the 17 individual type I IFNs. These antibodies were recently shown to underlie at least 10% of cases of life-threatening COVID-19 pneumonia. The auto-Abs were neutralizing in vitro, blocking the protective effect of IFN-α2 against YFV vaccine strains. AR IFNAR1 or IFNAR2 deficiency and neutralizing auto-Abs against type I IFNs thus accounted for more than half the cases of life-threatening YFV vaccine-associated disease studied here. Previously healthy subjects could be tested for both predispositions before anti-YFV vaccination.


Subject(s)
Antibodies, Neutralizing/immunology , Autoantibodies/immunology , Autoimmune Diseases , COVID-19 , Genetic Diseases, Inborn , Interferon-alpha , Receptor, Interferon alpha-beta , SARS-CoV-2 , Yellow Fever Vaccine , Yellow fever virus , Adolescent , Adult , Aged , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , COVID-19/genetics , COVID-19/immunology , Female , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/immunology , HEK293 Cells , Humans , Interferon-alpha/genetics , Interferon-alpha/immunology , Male , Middle Aged , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Yellow Fever Vaccine/adverse effects , Yellow Fever Vaccine/genetics , Yellow Fever Vaccine/immunology , Yellow fever virus/genetics , Yellow fever virus/immunology
19.
JCI Insight ; 6(4)2021 02 22.
Article in English | MEDLINE | ID: covidwho-1047074

ABSTRACT

Four endemic human coronaviruses (HCoVs) are commonly associated with acute respiratory infection in humans. B cell responses to these "common cold" viruses remain incompletely understood. Here we report a comprehensive analysis of CoV-specific antibody repertoires in 231 children and 1168 adults using phage immunoprecipitation sequencing. Seroprevalence of antibodies against endemic HCoVs ranged between approximately 4% and 27% depending on the species and cohort. We identified at least 136 novel linear B cell epitopes. Antibody repertoires against endemic HCoVs were qualitatively different between children and adults in that anti-HCoV IgG specificities more frequently found among children targeted functionally important and structurally conserved regions of the spike, nucleocapsid, and matrix proteins. Moreover, antibody specificities targeting the highly conserved fusion peptide region and S2' cleavage site of the spike protein were broadly cross-reactive with peptides of epidemic human and nonhuman coronaviruses. In contrast, an acidic tandem repeat in the N-terminal region of the Nsp3 subdomain of the HCoV-HKU1 polyprotein was the predominant target of antibody responses in adult donors. Our findings shed light on the dominant species-specific and pan-CoV target sites of human antibody responses to coronavirus infection, thereby providing important insights for the development of prophylactic or therapeutic monoclonal antibodies and vaccine design.


Subject(s)
Antibodies, Viral/isolation & purification , Common Cold/virology , Coronavirus Infections/immunology , Coronavirus/immunology , Endemic Diseases , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody Specificity , Antigens, Viral/blood , Antigens, Viral/immunology , Child , Child, Preschool , Common Cold/blood , Common Cold/epidemiology , Common Cold/immunology , Coronavirus/isolation & purification , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Cross Reactions , Epitopes, B-Lymphocyte/blood , Epitopes, B-Lymphocyte/immunology , Female , Humans , Male , Middle Aged , Protein Domains/immunology , Retrospective Studies , Seroepidemiologic Studies , Viral Proteins/immunology
20.
Med (N Y) ; 1(1): 14-20, 2020 12 18.
Article in English | MEDLINE | ID: covidwho-988793

ABSTRACT

The risk of life-threatening COVID-19 pneumonia increases sharply after 65 years of age, but other epidemiological risk factors, genetic or otherwise, are modest. Various rare monogenic inborn errors of type I interferons (IFNs) underlie critical disease, and neutralizing autoantibodies against type I IFNs account for at least 10% of critical cases.


Subject(s)
COVID-19 , Interferon Type I , Autoantibodies , Humans , Inflammation , Interferon Type I/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL